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ABSTRACT

The increasing availability of electronic text has made it
possible to acquire information using a variety of tech-
niques that leverage the expertise of both humans and
machines. In particular, the field of Information Extrac-
tion (IE), in which knowledge is extracted automatically
from text, has shown promise for large-scale knowledge
acquisition.

While IE systems can uncover assertions about individ-
ual entities with an increasing level of sophistication,
text understanding — the formation of a coherent the-
ory from a textual corpus — involves representation and
learning abilities not currently achievable by today’s IE
systems. Compared to individual relational assertions
outputted by IE systems, a theory includes coherent
knowledge of abstract concepts and the relationships
among them.

We believe that the ability to fully discover the rich-
ness of knowledge present within large, unstructured
and heterogeneous corpora will require a lifelong learn-
ing process in which earlier learned knowledge is used to
guide subsequent learning. This paper introduces AL-
ICE, a lifelong learning agent whose goal is to automat-
ically discover a collection of concepts, facts and gen-
eralizations that describe a particular topic of interest
directly from a large volume of Web text. Building upon
recent advances in unsupervised information extraction,
we demonstrate that ALICE can iteratively discover new
concepts and compose general domain knowledge with
a precision of 78%.
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Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning—Knowledge
Acquisition; 1.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search—Control theory

General Terms
Algorithms

1. INTRODUCTION

The accumulation of knowledge takes on a variety of
forms, ranging from the provision of information by do-
main experts and volunteer contributors, to techniques
that extract information from structured data, to sys-
tems that seek to understand natural language. Driven
by the increasing availability of online information and
recent advances in the fields of machine learning and
natural language processing, the Al community is in-
creasingly optimistic that knowledge capture from text
is within reach [4, 9]. Unsupervised algorithms that
exploit the availability of increasingly large volumes of
Web pages are learning to extract structured knowledge
from unstructured text.

Previous efforts in text-based knowledge acquisition can
largely be attributed to the field of Information Extrac-
tion (IE), where the task is to recognize entities and
relations mentioned within text corpora. Traditional
IE systems focused on locating instances of narrow,
pre-specified relations, such as the time and place of
events, from small, homogeneous corpora. The KNOW-
ITALL system [5] advanced the field of IE by capturing
knowledge in a manner that scaled to the size and di-
versity of relationships present within millions of Web
pages. KNOWITALL accomplished this task by learn-
ing to label its own training examples using only a set
of domain-independent extraction patterns and a boot-
strapping procedure. While KNOWITALL is capable of
self-supervising its training process, extraction is not
fully automatic; KNOWITALL requires a user to name a
relation prior to each extraction cycle for every relation
of interest. When acquiring knowledge from corpora as



large and varied as the the Web, the task of anticipating
all relations of interest becomes highly problematic.

A recent goal for knowledge extraction systems has been
to eliminate the need for human involvement, thus mak-
ing it possible to automate the knowledge acquisition
process for a new domain or set of relations. Such efforts
have resulted in the paradigm of preemptive or open
information extraction. Compared to traditional infor-
mation extraction, open information extraction systems
attempt to automatically discover all possible relations
from each sentence encountered. Shinyama and Sekine
[12] took important steps in the direction of open IE by
developing a method for unrestricted relation extraction
that could be applied to a small corpus of newswire ar-
ticles. The TEXTRUNNER system [1] was the first open
information extraction system to do this at Web scale,
processing just over 110,000,000 Web pages and yield-
ing over 330,000,00 statements about concrete entities
with a precision of 88%.

Despite advances in information extraction, the process
of text understanding — the formation of a coherent set
of beliefs from a textual corpus — involves representa-
tion and learning abilities not currently achievable by
today’s IE systems. While IE systems can uncover as-
sertions about individual objects, a theory of a partic-
ular domain is built from collective knowledge of con-
cepts and relationships among them. Compared to a
vast set of independent statements extracted through
IE, a domain theory represents knowledge compactly;
relationships are expressed between abstract concepts
at an appropriate level of generalization in a hierarchy.
Additionally, a domain theory contains only informa-
tion relevant to the topic at hand.

We believe that theory formation will involve a more
complex process in which the corpus is continually ana-
lyzed and knowledge is acquired increasingly over time.
The amount and richness of information that can be
gleaned from large, heterogeneous corpora such as the
Web will require an ongoing or lifelong learning pro-
cess in which earlier learned knowledge is used to guide
subsequent learning. While open IE further automated
the process of relation discovery, theory formation in-
volves the challenge of intelligently mechanizing the ex-
ploration of concepts within a given domain.

This paper introduces ALICE,' one of the first lifelong
learning agents to automatically build a collection of
concepts, facts and generalizations about a particular
topic directly from a large volume of Web text. Over
time, ALICE uses knowledge gained about attributes of
the domain to focus its search for additional knowledge.

INot to be confused with the infamous chatbot with the
same name, the name ALICE was inspired by the fictional
creator of a text-reading agent in Astro Teller’s novel, Eze-
gesis [15].

In this paper, we:

e Develop the paradigm of lifelong learning in the
context of hierarchical, unsupervised knowledge ac-
quisition from text.

e Describe ALICE, a lifelong learning agent that builds
upon recent advances in unsupervised information
extraction to discover new concepts and compose
abstract domain knowledge with a precision of 78%.

e Report on a collection of lifelong learning strate-
gies that enable ALICE to iteratively acquire a tex-
tual theory at Web scale.

The remainder of the paper is organized as follows. In
Section 2, we reintroduce the paradigm of lifelong learn-
ing previously articulated by members Al community.
In Section 3, we describe ALICE, our embodiment of a
lifelong learning agent that builds a domain theory from
text. We report on experimental results in Section 4,
followed by a review of related research in textual the-
ory composition in Section 5. The paper concludes with
a discussion of future work.

2. LIFELONG LEARNING

The paradigm of “lifelong learning” was articulated in
the machine learning community in response to stark
differences observed between human and machine learn-
ing abilities [16]. While humans can successfully learn
behaviors having had only a small set of marginally re-
lated experiences, machine learning algorithms typically
have difficulty learning from small datasets. The abil-
ity of humans to learn when faced with complex tasks
in new settings fraught with rich sensory input can be
attributed to the ability to exploit knowledge learned
during previous learning tasks. The fact that humans
learn continuously — increasingly more complicated con-
cepts and behaviors are developed over the course of an
entire lifetime — has motivated the development of boot-
strapping algorithms in which knowledge is transferred
over time from simple tasks to increasingly more diffi-
cult ones.

By definition, lifelong learning agents reduce the dif-
ficulty of solving the n'" learning problem they face
by using knowledge acquired from having solved ear-
lier problems. Thus, the learning process of a lifelong
learning agent happens incrementally; learning occurs
at every time step and knowledge acquired can be used
later. Learning also happens hierarchically; knowledge
is acquired in a bottom-up fashion and can be sub-
sequently built upon and altered. This type of be-
havior has been implemented in several autonomous
agents, mostly with application to robotics [17, 13] and
reinforcement-learning-based tasks [10].

An agent that learns incrementally inherently possesses



a mechanism for identifying and executing a series of
simple problem-solving tasks from the overall complex
problem at hand. This process has historically been
cast in terms of one of the most pervasive paradigms
of Al — learning as search. One of the earliest systems
to demonstrate this notion in the area of knowledge
representation and discovery was Automated Mathe-
matician (AM) [6]. AM was an agent that attempted
to discover new concepts in mathematics and the rela-
tionships between them using a heuristic-driven search
strategy. While AM notably suffered from several limi-
tations, it demonstrated that open-ended theory forma-
tion could be mechanized and modeled as search.

3. LIFELONGKNOWLEDGEACQUISITION

WITH ALICE

This section introduces ALICE, a lifelong learning agent
whose goal is to iteratively and hierarchically construct
a theory — a collection of concepts, facts and general-
izations that describe a particular domain of interest —
directly from text. ALICE begins with a domain-specific
textual corpus, a source of background knowledge, and
a control strategy and embarks on a search to update
and refine a theory of the domain. ALICE’s domain the-
ory is iteratively updated with various forms of knowl-
edge, including concepts and their instances, attributes
of concepts, and the various relationships among them.
Concepts abstractly refer to all instances of a given cate-
gory or class of entities (e.g. orange is an instance of the
concept, <FRUIT>). Attributes of concepts include the
various propositions or relations in which they take part
(e.g. a <FRUIT> is something that GROWS). Relation-
ships describe how concepts or instances are associated
(e.9. GROWIN(<FRUIT>, <LOCATION>)).2

ALICE’s general learning architecture is depicted in Fig-
ure 1. From a given input text corpus 7" in a domain
D, ALICE begins by using the TEXTRUNNER open in-
formation extraction system to extract facts about in-
dividual objects in the domain from each sentence in
the corpus. A fact takes the form of a relational tuple
f = (ei, 7 ;,¢e;), where e; and e; are strings that denote
objects in the domain, and r; ; is a string that expresses
a relationship believed to exist between them. Each tu-
ple is assigned a probability based on a probabilistic
model of redundancy in text [3].

The set of individual assertions output by TEXTRUN-
NER serves as the basis from which ALICE then proceeds
to add general knowledge to its domain theory. Begin-
ning with a single domain-specific concept ¢, which can
be specified manually or heuristically, ALICE uses a set
of learners L and a given search strategy S to develop an
agenda A of learning tasks to be completed over time.

2A domain theory may also contain rules describing depen-
dencies among propositions (e.g. GROWIN(X, Y) A ISA(X,
<CITRUS FRUIT>) — HASWARMCLIMATE(Y)). We antici-
pate adding the ability to learn rules in future work.

In addition to the TEXTRUNNER system that provides
ALICE with the ability to uncover a set of specific facts
about the domain, ALICE’s set of learners currently in-
cludes modules for concept discovery and proposition
abstraction.

Each of ALICE’s learning tasks is defined by a concept
c and a set of attributes 7(c). Attributes take the form
of relations associated with the current concept accord-
ing to ALICE’s unrestricted relation extraction process.
In our current implementation, relations in 7(c) are ex-
plored in descending order of the frequency with which
they have been observed to occur in the corpus along
with a sample of known instances of the concept c¢. Al-
though 7 is currently implemented as a heuristic func-
tion, we aim to have ALICE learn 7 as well. We describe
ALICE’s learning process in more detail in Section 3.1.

The final property that describes ALICE’s behavior is
S, the strategy that defines the order in which indi-
vidual learning tasks are addressed. Instead of taking
an uninformed, exhaustive path to theory construction,
ALICE is guided by knowledge accrued about attributes
perceived to be highly relevant to understanding of the
domain. One strategy may be for the system to thor-
oughly explore properties of the first concept it discov-
ers before attempting to learn about other concepts en-
countered subsequently. Alternatively, one can imagine
an agent in possession of a short attention span who
upon discovery of a new concept, immediately shifts its
current focus to learn something about the new item.
Thus, S can be exhaustive (e.g. depth-first or breadth-
first search) or heuristic-driven (e.g. best-first or A*
search). We describe several lifelong search strategies
in Section 3.2.

The knowledge output upon completion of a learning
task is used in two ways: to update the current do-
main theory and to generate subsequent learning tasks.
This very behavior is what makes ALICE a lifelong agent
— ALICE uses the knowledge acquired during the n'”
learning task to specify its future learning agenda. AL-
ICE’s general learning behavior is summarized in Fig-
ure 2.

3.1 Theory Learning

For our experiments, we have given ALICE access to 2.5
million Web pages focused on the topic of nutrition.
As an initial source of knowledge, ALICE makes use
of WordNet, a hand-built semantic lexicon for the En-
glish language that groups 117,097 distinct nouns into
81,426 concepts.> WordNet also expresses a handful of
semantic relationships between concepts, such as hyper-
nymy /hyponymy and holonymy/meronymy. Despite its
ability to cover a wide range of concepts, this knowledge

3 Although ALICE receives a background theory as input,
the system learns to add knowledge without hand-tagged
examples or manual intervention, and is thus unsupervised.
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Figure 1: System Overview of Alice. Given a domain, corpus and background theory, Alice iteratively
adds general, domain knowledge to its theory. The output of each learning cycle suggests the focus
of subsequent learning tasks. Examples of the concepts, instances and relations automatically added

to Alice’s theory are given in boldface.

source falls short in its ability to offer complete cover-
age of the domain. WordNet’s knowledge of entities and
concepts is incomplete, and it fails to specify the myr-
iad of relationships that exist between them. For ex-
ample, in the nutrition domain, we observed omissions
such as the lack of an entry for the noni, an exotic fruit
touted for its potent antioxidant properties, no concept
of “healthy food” and the inability to express the belief
that foods rich in antioxidants may prevent disease if
present in one’s diet.

3.1.1 Concept Discovery

Although the initial theory provided by WordNet con-
tains a large number of entities and concepts, it is by
no means exhaustive. Therefore, in addition to the hy-
pernymy and hyponymy information available in Word-
Net, ALICE acquires class membership information di-
rectly from its corpus using a set of domain-independent
extraction patterns and probabilistic assessment model
employed by KNOWITALL. This data-driven approach
makes it possible to acquire knowledge about entities
missing from WordNet with high accuracy.

At the beginning of each learning task, ALICE receives
an unexplored concept ¢, as input, instantiates the set
of extraction patterns (e.g. <x> such as <y>) with the
name of ¢,, (e.g. fruit such as <y>), applies them over
the input corpus, and uses the assessment model to add
high-probability instances of ¢, to its theory.

ALICE’s initial theory contains useful knowledge in the
form of previously discovered instances and some classes

to which they belong, such as the knowledge that buck-
wheat is a type of grain and that grain is a type of food.
Yet the concept hierarchy is in some places incomplete.
ALICE further utilizes the small set of extraction pat-
terns to add more fine-grained classes of existing con-
cepts present in its theory. By applying the constrained
extraction patterns using our knowledge of buckwheat,
(e.g. “<? grains> such as buckwheat”, “buckwheat is a
< ? food >”) and using a redundancy-based model of
fact assessment over ALICE’s corpus, ALICE finds that
buckwheat is not just any grain or food, but more specif-
ically, a type of whole grain, gluten-free grain, fiber-rich
food and nutritious food.

Occasionally we find that an existing WordNet concept
possesses more than one sense. While fruit is most often
used to refer to a ripe object produced by a seed plant,
it can also designate the consequence of some action.
While it may be possible to disambiguate among vari-
ous senses of a word, we found that using the heuristic
of placing the newly discovered subcategory under the
most frequent sense of the word according to WordNet
served well.

Upon inspection of approximately 100 random samples
of subclasses proposed by this method, we found that
78.3% of the classes were legitimate and meaningful ad-
ditions to the theory (e.g. oily fish, leafy green vegetable,
complex carbohydrate), 14.1% were vacuous or not im-
mediately useful (e.g. important antioxidant, favorite
food), and the remaining 7.6% were errors.



3.1.2 Proposition Abstraction

Another type of information that can be added to AL-
ICE’s domain theory are general propositions found by
the process of abstraction. Compared to statements
about individual entities found by relation extraction
in TEXTRUNNER, general propositions express relation-
ships among concepts. Such relationships encode “rea-
sonable general claims” about the world from partic-
ular facts [11]. In our domain, the general proposi-
tion PROVIDE(<FRUIT>, <VITAMIN>) should be de-
duced from the set of tuples { (oranges, provide, wvi-
tamin c), (bananas, provide, a source of B vitamins),
(an avocado, provides, niacin)}. A key challenge in
deducing general claims from a set of isolated facts is
finding a suitable level of generalization in the con-
cept hierarchy. Consider for example, the difference
in knowing PROVIDE(<FRUIT>, <VITAMIN>>) VeISus

PROVIDE(<FOOD>, <SUBSTANCE>). The goal of propo-

sition abstraction is to find the lowest point in concept
hierarchy that describes a set of related instances.

The task of proposition abstraction can also be cast as
the process of estimating the likelihood that a given
concept appears as an argument to a given relation.
Yet relations often take multiple concepts as arguments
— the predicate PROVIDE(X,Y) can describe both a re-
lationship between <FRUIT> and <VITAMIN> as well
as one between <COMPANY> and <PRODUCT>. If in
addition to the three tuples observed in the previous
example, we saw that (Vitamin World, provides, Su-
per Antioxidant Plus), a naive approach might propose
PROVIDE(<ENTITY>, <ENTITY>), an abstraction too
general to be of use. We use this observation to motivate
a clustering-based approach to proposition abstraction,
which we now describe.

Given an input relation r» whose arguments we wish to
generalize, ALICE obtains a set of TEXTRUNNER tu-
ples ¢ that match the form (e;,r,e;). The system then
examines each entity e; and e; in ¢ and tries to ob-
tain the set of concepts to which they belong. In some
cases, ALICE will already have this information in the
theory; otherwise, ALICE will take some time to learn
about the possible class and subclass memberships for
a new instance using the discovery process described in
the previous section. The system automatically clusters
the tuples in ¢ , using class-membership features where
known, and words frequently observed to appear in the
individual entity strings. For each cluster t;, € t AL-
ICE generates a set of abstractions using the following
algorithm, and adds them to the theory.

Given a cluster of tuples, t;, ALICE obtains the set of
entities e;1...¢e; | observed in the it" argument po-
sition and retrieves the set of concepts that possibly
characterize it according to the current theory. The
system then computes an association measure M that
measures the likelihood that each concept ¢ describes

ALICE ( Corpus T,
Background Theory 6,
Search Strategy S)
Facts F — TEXTRUNNER(T)
Agenda A — {co}
Forn=0...00
cn — next(A)
If IsNewConcept(cy,)
0" — DiscoverConcept(cp, T, 0)
0—¢
r = Select Attribute(cy,)
0" — Abstract(r,c,, F,0)
A — Insert(A,cp41 ... Cnti) according to S
0 —¢

Figure 2: Alice’s Lifelong Learning Process

the i*" argument slot in the context of the relation r:

7| Count(r,e; ; € c)
M(arg; = c|r) = w, )

=1
[t

Since we typically prefer more specific concepts to those
that are more general, we weights each concept accord-
ing to its place in the theory’s current concept hierarchy,
biasing the measure by é, where d is the maximum dis-
tance found between any entity e; ; and the concept c
under consideration. The algorithm greedily searches
for the combination of conceptual slot descriptions that
best covers the set of tuples in the cluster, with the
constraint that an abstraction must cover a minimum
number of tuples to be meaningful. If any tuples remain
undescribed by the best abstraction , the procedure is
repeated until all items in the cluster are fully covered,
or until we can propose no more generalizations.

In order to sidestep the problem of needing to pre-
specify the number of clusters to find in the data, we
first employed a expectation-maximization clustering
algorithm that used cross validation to determine the
number of clusters. We found the approach to not only
be too slow in practice, but unable to produce clusters
that were sufficiently fine-grained. We found a better
solution in k-means clustering [8]. Although k-means
requires the number of clusters to be specified a priori,
the system used its theory to estimate k as the maxi-
mum number of distinct concepts present in each argu-
ment position according to the entities in the cluster. In
practice, this approach results in a large number of clus-
ters, which can easily be reduced via a post-processing
step that merges clusters whose centroids were found
to be close together. We empirically evaluate ALICE’s
ability to generalize from individual facts in Section 4.



3.2 Search

We now describe how ALICE generates and prioritizes
subsequent theory-learning tasks. Recall that our goal
is to automatically construct a theory of a particular
topic from a textual corpus. In some cases, such as when
working with a set of automatically gathered Web pages
or a general-purpose text collection, out-of-domain in-
formation may be present. A page might mention the
nutrient iron as part of a discussion about health con-
ditions in which the body is unable to absorb it. A text
collection might contain pages about an object in the
domain in a different sense of the word (e.g. iron, a de-
vice used to press clothing). Therefore, ALICE’s search
must be guided towards domain-specific concepts and
relations as much as possible. An uninformed exhaus-
tive strategy that simply iterates over all concepts and
relations found in the input corpus independent of ex-
isting domain knowledge will likely introduce spurious
information into our domain theory.

3.2.1 Best-first search

Our first attempt at building a lifelong learner pro-
duced a heuristic-driven agent who is eager to explore
new concepts at every opportunity. For instance, af-
ter beginning with the concept <FRUIT> and learning
that in general, the proposition CONTAIN(<FRUIT>,
<ANTIOXIDANT>) holds, ALICE is eager to learn more
about the concept of <ANTIOXIDANT>. This inclina-
tion feels quite natural. Yet upon subsequently learning
that MAYPREVENT(<ANTIOXIDANT>, <DISEASE>) is
true in the general case, ALICE prefers to see what can
be gleaned by learning about diseases. This greedy ap-
proach can sometimes send ALICE into a tailspin.

Formally, after an initial concept ¢y has been specified
to ALICE, the agent executes 7(cp) to obtain the next
relation r associated with the concept. ALICE uses the
set of learners to add general propositions of r and fur-
ther develop concepts encountered during this proce-
dure. After completing the n*" learning cycle, all con-
cepts ¢ which have been activated while learning about
r are put into A, which in this case, is a priority queue.
During best-first search, the concepts in A are ordered
in descending order according to how many instances of
the concept have been newly discovered by the learner.
Other possible heuristics include an ordering of con-
cepts based on distance in the concept hierarchy, or the
similarity with which attributes have been observed to
occur for concepts under consideration.

3.2.2 Associative search

We developed an alternate search strategy based on yet
another natural learning process — search by analogy,
or what we will refer to as associative search. Broadly
speaking, learning by analogy utilizes the structure and
outcome of the agent’s problem-solving history to learn
something about a new problem.

During associative search, ALICE uses the output of
iteration n to immediately conjecture similar learning
tasks for iteration n + 1. For example, if ALICE learns
that CONTAIN(<FRUIT>, <VITAMIN>), it reasonable
to expect a cohesive theory to tell us what, if any-
thing else in the domain, contains vitamins. Associa-
tive search provides an elegant manner for exploring re-
lated concepts while remaining focused on the domain
at hand. If as before, ALICE concluded that MAYPRE-
VENT(<ANTIOXIDANT>, <DISEASE>), the agent will
next try to understand what else may prevent disease,
rather than fall prey to exploring a tangent on the topic
of disease that gradually shifts its focus away from the
domain of interest.

Upon learning about an active concept ¢, having at-
tribute r, associative search places all ¢’ found to be re-
lated to ¢, via r into the concept list A with attribute
r. After ALICE has completed this stack of learning
tasks, (A is empty), a new attribute of ¢, is chosen
by the function 7, using the frequency-based ordering
described previously.

3.2.3 Breadth-Limited search

The final search strategy we implemented was a simple
one that encouraged the agent to explore concepts in a
semi-exhaustive fashion. Instead of pursuing a fully ex-
haustive strategy in which the agent attempts to learn a
complete set of statements about a concept before mov-
ing on to another, we implemented breadth-first search
algorithm that limits the number of concepts explored
based on information obtained during previous learning
tasks.

From an implementation standpoint, this search strat-
egy is identical to the best-first strategy with one key
exception — concepts placed in A are explored in order
of when they enter the queue, rather than sorted by
the “newness” criteria previously defined. Each time
a concept ¢’ is activated during a learning task involv-
ing ¢, at depth d, a new learning task for ¢’ is gen-
erated for depth d + 1. While ALICE might end up
learning some additional facts about <DISEASE>, this
will happen incrementally at an appropriate rate rela-
tive to other concepts, rather than allowing the agent
to spend all immediate resources learning about disease
and related concepts.

4. EXPERIMENTAL RESULTS

In this section, we empirically assess ALICE’s ability
to add a collection of abstract assertions about nutri-
tion from a 2.5-million-page Web crawl constructed to
contain documents in the domain. There are several
criteria at play when judging the overall “goodness” of
the learned abstractions. Our assessment should take
into account an abstraction’s ability to generalize from
instances to concepts at an appropriate level. Our eval-
uation metric should also consider whether or not the



abstraction in question is on topic given the domain.
This criteria provides us with a way to assess the per-
formance of each search strategy we have implemented.

We ran each search strategy over the same corpus for a
fixed number of learning steps (200), and chose a ran-
dom sample of 200 abstract propositions for each of the
three search methods. Using a modified version of an as-
sessment scheme previously developed by Schubert [11],
one of the authors of this paper was asked to assign each
proposition P one of the following labels in the context
of the domain D:

Off-Topic: P expresses a fact not central to D,

e.g. CAUSE(<ORGANISM>, <DISEASE>)
True: P is a reasonable general claim about D,

e.g. PROVIDE(<FRUIT>, <VITAMIN>>)
Vacuous: One or more arguments of P are not
appropriately specific/general,

e.g. PROVIDE(<FOOD>, <SUBSTANCE>),
Incomplete: P is missing something,

e.g. PROVIDE(<ANTIOXIDANT>, <BODY PART>)
Error: P contradicts our knowledge of D,

e.g. BENOT(<FRUIT>, <FOOD>)

The results of our assessment are given in Table 1. The
heuristic-driven best-first search was observed to ven-
ture off-topic after a few iterations, yielding a theory
judged to contain a sizable amount of out-of-domain
knowledge. Once ALICE has discovered the concept
of <syMPTOM>, ALICE pursues a set of illness-related
concepts including <DISEASE>, <INFECTION> among
others. This failure can be attributed not only to the
greediness of the heuristic and the imperfect nature of
the Web corpus from which ALICE constructs the the-
ory, but by the overly general concept, <FOOD>, that
generated this particular learning task. The fact that
the concept of <FOOD>> is positioned fairly high in the
concept hierarchy has the impact that it stands in re-
lation to quite a number of concepts, a proportion of
which will be out-of-domain.

Compared to best-first search, associative and breadth-
limited search fared much better, adding appropriately-
general, domain-specific abstractions to ALICE’s theory
with a precision of 78.0% and 75.5%, respectively. The
bulk of the remaining assertions were characterized as
on-topic but vacuously true — 9.5% in the case of asso-
ciative search, and 12.5% in the case of breadth-limited
search. The small amount of propositions judged as
“incomplete” is due to a limitation of the knowledge
representation scheme in TEXTRUNNER in which n-ary
relations are currently not handled. The few instances
deemed to be “errors” were largely due to cascading er-
rors originating with TEXTRUNNER or an inability to
correctly disambiguate objects having multiple senses.

We also compared the recall of the three approaches, as

On-Topic Off
True Vacuous Inc Error | Topic
Best-First 39.5% 6.5% 0.0% 1.0% | 43.0%

Associative 78.0% 9.5% 3.0% 3.5% 6.0%
Breadth-Limited | 75.5% 12.5% 3.0% 1.5% 7.5%

Table 1: Precision of Proposition Abstraction

shown in Figure 3. Since true recall cannot be easily
computed from an unstructured Web corpus, we mea-
sure recall in terms of the size of the set of distinct
abstractions proposed. Although the best-first strategy
outputs a large number of generalizations, recall that a
low proportion of them were judged to meet our mea-
sure of goodness. Using our precision assessment, both
associative and breadth-limited search are estimated to
output a greater proportion of correct, on-topic gener-
alizations after 200 iterations — 543/696 and 779,/1038
respectively — compared to only 517/1309 for best-first
search.

Finally, we measured the diversity of concepts and re-
lations expressed within the propositions found by each
search algorithm, and found that the statements cover
a wide variety of attributes of the domain. Associative
search was found to propose statements about distinct
concepts at a rate of 0.67, and novel predicates at a rate
of 0.32. The propositions output by best-first search in-
volved a large number of distinct concepts (0.78), but
a smaller number of predicates (0.23). Breadth-limited
search proposed abstractions at a rate that contains the
fewest number of distinct concepts (0.56), while the rate
of unique predicates was observed to be 0.29. Nearly all
of the concept-to-concept relationships proposed by AL-
ICE were novel relative to the input source of WordNet
—98.5% of the propositions output by assocative search
were not already present in the background onotlogy.
Similar results were observed for breadth-limited search
(99.5%) and best-first search (95.5%).

5. RELATED WORK

To date, the task of inducing domain theories directly
from textual corpora has been explored by only a few
systems. Liakata and Pulman [7] showed that they
could induce a logically structured inference rules from a
4000-word corpus describing company succession events.
While the method was anecdotally shown to learn a
handful of useful domain-specific rules, to our knowl-
edge, an extensive empirical evaluation of the system
output has not been reported.

While previous efforts to augment the WordNet ontol-
ogy are too numerous to discuss here, most recently,
Suchanek et. al. developed YAGO [14], a system ca-
pable of unifying facts automatically extracted from
Wikipedia Web pages to concepts in WordNet. While
YAGO performs this unification with an accuracy of
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Figure 3: Knowledge Acquisition By Search
Strategy. For each algorithm, recall is computed
as the total number of distinct abstractions pro-
posed after each search iteration.

95%, its coverage is currently limited to a handful of re-
lations that are derivable using the structure and head-
ings contained within Wikipedia pages.

Earlier, Schubert and Tong developed a method for ex-
tracting “general world knowledge” of the flavor de-
duced by ALICE. Their approach took a set of human-
validated parse trees from the Penn Treebank, and used
a combination of tree-based pattern matching and heuris-
tics to obtain a set of abstract propositions. Using sim-
ilar criteria that we have employed in our evaluation
of ALICE, human assessors found about 60% of state-
ments extracted by this method to be “reasonable gen-
eral claims.” Also related to the task of deriving rela-
tionships between concepts is Clark and Weir’s use of
parsed corpora and chi-squared statistics to induce re-
lationships between existing concepts in WordNet [2].
Their method was evaluated indirectly by its ability
to improve a natural language disambiguation task on
which a precision of around 75% was obtained.

While these methods attempt to solve the same task of
finding abstract propositions within text, their inherent
assumptions — the use of small, parsed corpora — make
it impossible to perform a direct comparison relative
to the method we have presented in this paper. The
success of ALICE relies not on the ability to parse its
input corpus, which is orders of magnitude larger, but
on unsupervised techniques that exploit the redundancy
of information found within unstructured text.

6. CONCLUSIONSAND FUTURE WORK

We have introduced ALICE, one of the first lifelong
learning agents capable of building a domain theory
from a large collection of Web text. ALICE uses in-
formation from previous knowledge acquisition tasks to
iteratively compose individual statements output by a
state-of-the-art information extraction system into an

abstract domain theory with a precision of 78%.

In the immediate future, we plan to explore the notion
of mutual recursion in the context of ALICE. Mutual re-
cursion can take several forms, including the use of the
domain theory output by ALICE to improve modules
like TEXTRUNNER that underlie its learning process,
and the construction of inference rules from ALICE’s
general world knowledge. Finally, we plan to explore
what ALICE can learn from its search through the space
of knowledge, making it possible to both eliminate fruit-
less learning tasks and identify areas in which ALICE’s
theory can be further enriched.
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